Quantifying and Measuring Morphological Complexity

Max Bane
bane@uchicago.edu
Department of Linguistics
University of Chicago

WCCFL 26, April 27–29 2007
The Plan

1. Motivation
2. Quantifying Complexity
3. Measuring Complexity: Morphology
4. Measurements
5. Summary
Linguistic Complexity
An Unpopular Topic

“[A]ll known languages are at a similar level of complexity and detail — there is no such thing as a primitive language.” (Akmajian et al 1997)

“In sum, linguists don’t even think of trying to rate languages as good or bad, simple or complex.” (O’Grady et al 2005)
The Equal Complexity Hypothesis (Truism)

- Received wisdom: Every language is equally (enormously) complex.
- ⇒ A language with, say, very simple morphology must compensate with elaborated phonology, syntax, etc.
- A traditionally untested claim
 - “Complexity” is a loaded word.
 - Difficulties of scope.
 - It’s not immediately obvious how to approach complexity in a principled, quantitative way.
 - Controversy! McWhorter (2001): “The world’s simplest grammars are creole grammars.”
An Important Hypothesis

• The equal complexity hypothesis deserves formal articulation and scrutiny.
 • An empirical claim to be tested under particular definitions of complexity.

• Important because of ramifications for:
 • The predictive power of historical linguistics:
 $\Delta \text{Complexity} = 0$
 • Theories of grammar and representation
 • Psycholinguistics and Cognitive Science
Goals of This Talk

- Two main points:
 - Let’s measure complexity!
 - Information Theory provides powerful formalisms for approaching just this sort of question.
Defining Linguistic Complexity

“How to measure . . . complexity is itself an issue of some complexity.” (Nichols 1992)
Existing Metrics

- Have been proposed by Nichols (1992, 2007), McWhorter (2001), Shosted (2005), and others.
- General method: Count the occurrences of a variety of hand-picked, intuitively justified properties of the linguistic system.

Phonological Complexity
- Size of phoneme/syllable inventory.
- Number of “marked” phonemes.
- Number of rules/alternations.

Morphological Complexity
- Number of possible inflection points in a “typical” sentence.
- Number of inflectional categories, morpheme types.
- AUTOTYP “synthesis” (Bickel & Nichols 2005).

Syntactic Complexity
- Number of parameters deviating from default.
Problems

- Conversion and meaningful comparison of measured variables
 - E.g., how many phonemes is a given rule worth?
- What is the guiding principle in selecting relevant properties?
 - Overspecification? Communicative non-necessity? How do we determine that, exactly?
- Can be impressionistic.
A guiding principle — McWhorter (2001) hits on it:

- Some grammars might be seen to require lengthier descriptions in order to characterize even the basics of their grammar than others.

Put another way:

- We’re interested in how much “information” is contained in the most concise description of (the grammar of) a given linguistic system.

What is information?

- Bits
The Complexity of Strings

- Assumption: any grammar, linguistic system, module, set of observations, whatever can be encoded systematically as a string over some alphabet.
- Information theory offers a notion of complexity for strings
- Intuitively, which of (1) and (2) is more complex?
 (1) 10101010101010101010
 (2) 11011111000101011010

Need to list the string itself.
⇒ (2) is more complex.
The Complexity of Strings

- Assumption: any grammar, linguistic system, module, set of observations, whatever can be encoded systematically as a string over some alphabet.
- Information theory offers a notion of complexity for strings
- Intuitively, which of (1) and (2) is more complex?
 - (1) 10101010101010101010
 - (2) 11011111000101011010
- (1) = “10 ten times”
The Complexity of Strings

- Assumption: any grammar, linguistic system, module, set of observations, whatever can be encoded systematically as a string over some alphabet.
- Information theory offers a notion of complexity for strings.
- Intuitively, which of (1) and (2) is more complex?
 - (1) 10101010101010101010
 - (2) 11011111000101011010
- (1) = “10 ten times”
- (2) = ??
 - Need to list the string itself.
- ⇒ (2) is more complex.
Kolmogorov Complexity
The length of the shortest description

- Formalized as Kolmogorov Complexity (Solomonoff 1964, Kolmogorov 1965)
- The Kolmogorov complexity $K_L(s)$ of a string s relative to a description language L is the length of the shortest $d \in L$ such that d “describes” s.
- Kolmogorov complexity is measured in bits.
- Two issues
 - What’s it mean to describe a string?
 - Finding the shortest description.
English as a description language.
 Too poorly understood. When does a given statement “describe” something?

Solution: Programming languages
 A program P describes a string s iff P outputs s.
 \Rightarrow Relative to a programming language L, $K_L(s)$ is the length of the shortest program $P \in L$ such that P outputs s.

But which programming language?
 Short answer: it (provably) doesn’t matter.
 Long answer: the Gödel numbers of the Universal Turing Machine.
Kolmogorov Complexity is Approximable

- Can never be sure we’ve found the absolute shortest description.
- This is rarely a problem in practice.
- We can approximate Kolmogorov complexity by computing upper bounds on it.
 - Numerous compression algorithms (Zip, RAR, SIT, etc.)
 - Description Length

⇒ Kolmogorov complexity serves as an idealized, general purpose definition of complexity as a quantity.
 - Approximable as necessary.
To craft a complexity metric we must answer three questions:

- What exactly is the **object** or system whose complexity we’re after?
- How will we **encode** that object as a string?
- What method will we use to **approximate** the Kolmogorov complexity of that string?
Complexity of Grammars

- **Object:** the *grammar* that generates/accepts the language.
 - Or some component thereof . . .
 - Phonological grammar
 - Morphological grammar
 - etc.

 $$D \rightarrow G \rightarrow \lambda$$

 - G generates the language λ, a set of licit strings.
 - G is a grammar devised by linguists for λ.
 - D is the shortest description of (i.e., computer program that outputs) G.
 - Our ideal complexity metric is $|D|$.

Motivation

Quantifying Complexity

Measuring Complexity: Morphology

Measurements

Summary

McWhorter (p.c. in Shosted 2005): “usually richer and more widespread interaction with syntax, this interaction being of note in covering the general issue of complexity more widely.”

A simple model (string encoding) of affixal morphology:
- A lexicon
- ⇒ All morphemes (stems & affixes) and descriptions of their distribution (“signatures”)

... As produced by an automatic morphological analyzer (“lemmatizer”).
- Linguistica (Goldsmith 2001, 2006; Yu 2007).
Example

- French:
 - Stem: accomplished, academic
 - Suffixal Signature: ∅.e.t.r.s.ssent.sssez, cien.e.es.que, ∅.s

finale+ment l’+ange me montr+a le fleuve de la vie limpide comme du cristal qui jaillissai+t du trône de dieu et de l’+agneau
au milieu de l’+avenue de la ville entr+e deux bras du fleuve se trouv+e l’+arbre de vie il produi+t douze récolte+s chaque mois il port+e son fruit ses feuill+es serve+nt à guéri+r les nati+ons (Apocalypse 22)
Linguistica tries to minimize the K. complexity of the grammars it induces.

- Kolmogorov approximation: “Description Length” (DL)
- Gives us enough information to construct a simple metric

Complexity (DL) of the morphological lexicon distributed between:
- Stems
- Affixes
- Signatures

A morphologically simple language will have...
- Most words analyzed as monomorphemic (stems)
- Few affixes, few signatures

A morphologically complex language will have...
- Fewer monomorphemic words
- More affixes, more signatures
A Complexity Metric for Affixal Morphology

- Metric:

 \[
 \frac{DL(\text{Affixes}) + DL(\text{Signatures})}{DL(\text{Affixes}) + DL(\text{Signatures}) + DL(\text{Stems})}
 \]

 where \(DL(x) \) = complexity (description length) of \(x \) (bits).

- The proportion of total lexicon complexity due to affixes and description of their distribution
 - A ratio of bits

- *Not* just counting *number* of affixes, etc.

- Caveats
 - Very poor for non-affixal morphology (templatic, infixal, reduplicative, etc.)
 - Linguistica isn’t perfect
Exploratory Measurements: Method

- Two sets of written corpora
 - Bible translations ("fixed" semantics)
 - Texts collected from the web (by Kevin Scannell’s language-targeting web-crawler)
- Corpora analyzed by Linguistica
 - Produces lexicon and description length figures
- Metric computed
Exploratory Measurements: Bible Corpora

<table>
<thead>
<tr>
<th>Language</th>
<th>Metric</th>
<th>Types</th>
<th>Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latin</td>
<td>35.51%</td>
<td>46,722</td>
<td>604,305</td>
</tr>
<tr>
<td>Hungarian</td>
<td>33.98%</td>
<td>63,046</td>
<td>597,084</td>
</tr>
<tr>
<td>Italian</td>
<td>28.34%</td>
<td>35,232</td>
<td>774,946</td>
</tr>
<tr>
<td>Spanish</td>
<td>27.50%</td>
<td>29,021</td>
<td>664,108</td>
</tr>
<tr>
<td>Icelandic</td>
<td>26.54%</td>
<td>34,911</td>
<td>667,363</td>
</tr>
<tr>
<td>French</td>
<td>23.05%</td>
<td>31,684</td>
<td>728,191</td>
</tr>
<tr>
<td>Danish</td>
<td>22.86%</td>
<td>24,280</td>
<td>653,036</td>
</tr>
<tr>
<td>Swedish</td>
<td>21.85%</td>
<td>23,964</td>
<td>675,315</td>
</tr>
<tr>
<td>German</td>
<td>20.40%</td>
<td>24,692</td>
<td>729,853</td>
</tr>
<tr>
<td>Dutch</td>
<td>19.58%</td>
<td>21,242</td>
<td>727,489</td>
</tr>
<tr>
<td>English</td>
<td>16.88%</td>
<td>15,570</td>
<td>737,241</td>
</tr>
<tr>
<td>Maori</td>
<td>13.62%</td>
<td>8,271</td>
<td>977,565</td>
</tr>
<tr>
<td>Haitian Creole</td>
<td>2.58%</td>
<td>7,307</td>
<td>920,332</td>
</tr>
<tr>
<td>Vietnamese</td>
<td>0.05%</td>
<td>7,144</td>
<td>837,733</td>
</tr>
</tbody>
</table>

- Metric-Types Correlation: 0.89 ($p = 0.002\%$)
- Metric-Tokens Correlation: -0.79 ($p = 0.07\%$)
Exploratory Measurements: All Corpora

<table>
<thead>
<tr>
<th>Language</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latin</td>
<td>35.51%</td>
</tr>
<tr>
<td>Hungarian</td>
<td>33.98%</td>
</tr>
<tr>
<td>Italian</td>
<td>28.34%</td>
</tr>
<tr>
<td>Spanish</td>
<td>27.50%</td>
</tr>
<tr>
<td>Icelandic</td>
<td>26.54%</td>
</tr>
<tr>
<td>French</td>
<td>23.05%</td>
</tr>
<tr>
<td>Danish</td>
<td>22.86%</td>
</tr>
<tr>
<td>Swedish</td>
<td>21.85%</td>
</tr>
<tr>
<td>German</td>
<td>20.40%</td>
</tr>
<tr>
<td>Dutch</td>
<td>19.58%</td>
</tr>
<tr>
<td>English</td>
<td>16.88%</td>
</tr>
<tr>
<td>Maori</td>
<td>13.62%</td>
</tr>
<tr>
<td>Papiementu*</td>
<td>10.16%</td>
</tr>
<tr>
<td>Nigerian Pidgin*</td>
<td>9.80%</td>
</tr>
<tr>
<td>Tok Pisin*</td>
<td>8.93%</td>
</tr>
<tr>
<td>Bislama*</td>
<td>5.38%</td>
</tr>
<tr>
<td>Kituba*</td>
<td>3.40%</td>
</tr>
<tr>
<td>Solomon Pijin*</td>
<td>2.91%</td>
</tr>
<tr>
<td>Haitian Creole*</td>
<td>2.58%</td>
</tr>
<tr>
<td>Vietnamese</td>
<td>0.05%</td>
</tr>
</tbody>
</table>

* = Creole/Pidgin
Summary

- The Equal Complexity Hypothesis could have important ramifications.
- Information Theory offers a general notion of complexity, and a methodology.
- Applied to morphological grammars
 - Via an automatic lemmatizer (Linguistica)
- Preliminary measurements
 - Reasonable relative rankings
 - Creoles are least complex
Applying to more principled models of morphological grammar

Other information theoretic approaches to morphological complexity
 - Juola 1998, to appear

Correlation with other quantities?
 - Production errors
 - Speech rate

Metrics for other grammatical domains

System complexity vs processing complexity

Information theoretic typology of complexity
 - Test the Equal Complexity Hypothesis
Thank You

Special thanks to Alan Yu, Jason Riggle, Salikoko Mufwene, Jason Merchant, Kevin Scannell, and Patrick Juola for valuable discussion and advice.